April 28, 2017

FAA and ASSURE Announce Results of Ground Collision Study

WASHINGTON, D.C. — What could happen if a drone hit a person on the ground? What’s the risk of serious injury? Can those risks be reduced?

Although the Federal Aviation Administration (FAA) can’t yet definitively answer those questions, studies by a consortium of leading universities, through the Alliance for System Safety of UAS through Research Excellence (ASSURE), have begun to better understand the risks associated with flying small unmanned aircraft – or drones –over people and things on the ground.

The ASSURE research team, which is led by The University of Alabama in Huntsville and includes the University of Kansas, Mississippi State University and Embry-Riddle Aeronautical University, began its research in September 2015. The research will help the FAA shape future follow-on research to set guidelines for UAS operations over people, and possibly influence design specifications that reduce risk to people and property.

“The results of this work are critical to the successful commercial operations of flying  unmanned aircraft over people and beyond the pilot’s visual line of sight,” said Mississippi State University’s Marty Rogers, director of ASSURE.

Today at 2:00 p.m. EST, at the FAA Federal Headquarters in Washington, D.C., the FAA along with ASSURE members, announced their findings in The UAS Ground Collision Severity Evaluation Final Report.

The report identified three dominant injury types applicable to small drones:

  • Blunt force trauma – the most significant contributor to fatalities
  • Lacerations – blade guards required for flight over people
  • Penetration injuries – difficult to apply consistently as a standard

“The research team reviewed over 300 publications from the automotive industry, consumer battery market, toy standards and other fields to inform their research using the most modern research techniques,” said David Arterburn, director of the Rotorcraft Systems Engineering and Stimulation Center at the University of Alabama in Huntsville and principal investigator for the study. “From these, we were able to identify blunt force trauma, penetration injuries and lacerations as the most significant threats to people on the ground.”

The research also identified hazardous drone features, like unprotected rotor blades, and mitigations, like rotor blade guards, to reduce the severity of injury.

The research showed multi-rotor drones fall more slowly, due to aerodynamic drag, and cause less damage than the same mass of metal or wood. Drones also deform and flex more than wood and metal debris, imparting lesser amounts of energy and, therefore, less damage. The report also highlights that the lithium batteries that power many small drones need a unique standard to ensure safety.

Additionally, the report defines the characteristics of different unmanned vehicles, and provides a detailed evaluation of payload characteristics, minimum weight and speed thresholds (i.e. too small to regulate), credible scenarios for evaluation, injury mechanisms defined as kinetic energy/energy density thresholds, blade energy thresholds, and mitigating characteristics of design.

Finally, the team conducted crash tests, dynamic modeling, and analyses related to kinetic energy, energy transfer, and crash dynamics.

When the studies were complete, personnel from NASA, the Department of Defense, FAA chief scientists, and other subject matter experts conducted a strenuous peer review of the findings.

The complete report is available for download by visiting ASSUREuas.org. Additional information is also available at FAA.gov.

The second phase of ASSURE’s research is set to begin in June 2017, and will verify the findings of this study, as well as develop tests manufacturers can use to certify their UAS for flights over people. Later this summer, the results of another study examining UAS collisions with aircraft will be released.

ASSURE partners represents 23 of the world’s top research institutions and more than 100 leading industry and government partners. (Learn more at ASSUREuas.org.) ASSURE membership includes representation in 13 states, nine countries, and over 200 locations, and core to three UAS test sites.

About Assure UAS

The Alliance for System Safety of UAS through Research Excellence (ASSURE)’s goal is to help the Unmanned Aerial System market grow into its multi-billion-dollar market potential by conducting research that quickly, safely and effectively get UAS flying alongside manned aircraft around the world.






Download: .JPG


Download: .JPG

Media Contact

Anna Neel

Start typing and press Enter to search